the first

LANGUAGE

manual

The SAM76 Language

The SAM76 language was designed by people for people - not by
programmers for programmers. It follows a well defined syntax which is
easy to learn and to read. The notation avoids the use of pseudo
"English” words which are a frequent source of confusion and ambiguity
in many of the other computer languages.

The SAM76 language can be used in as large a variety of tasks as one is
able to imagine - this on personal computers without requirind comouter
specialists or programmers to intercede.

There are more than 150 functions - or instructions - available making
the SAM76 language the most powerful available today, and it fits in
approximately eight thousand bytes of memory; this can be ram or rom as
the user desires.

The SAM76 language can be viewed as a2 real language which follows the
user's stream of consciousness in much the same manner as spoken
lanquage. This permits the language in its written form as used by the
computer and the user to serve as documentation.

The SAM76 language provides the user with the capability of recuiring
the computer to perform complex operations in many areas; ¢ few of Liese
are: Contrcl, Texc manipulation and editing, Simulation, Arithmetic with
any desired precision.

The SAM76 language is interactive and reactive. As one task is
accomplished the user continues and in effect the SAM76 language
processor carries on a conversation , reacting to expressed desires.

The SAM76 language provides a uniguely flexible means to control
facilities or to derive data from sources other than the user's
keyboard.

The SAM76 language is a "string processor”. This means that the units of
information are not confined to any fixed length, but may be made up of
any number of characters, or even no characters, as determined by the
user. Entire strings may be manipulated by sincle commands.

The SAM76 language is interpretive. This means that when a string is
evaluated and an expression found to contain an instruction or command,
then the specified action is i-ndute.ly performed and the resulting
value, if any, replaces that expression in the string.

The SAM76 language facilitates the use of pre-defined procedures. This
means that the user's procedures or scripts may be stored for potential
use and later called by name and immediately acted upon, with variables
supplied to specified arguments as part of the process.

The SAM76 language makes no distinction, except in the user's own use of
information, between data and procedures. Procedures tell the processor
what to do; data is the information acted upon by the procedures.
Procedures may be modified when other procedures treat them as data.

The SAM76 language is most powerful in providing man-machine interaction
permitting the user to modify his work and to intervene when desired.
The language provides facilities to define and save scripts for
subseguent use; this in effect can behave or operate as if they
themselves were inherent functions of the language.

& designed for you and your personal computer

SAM76

238 - |ef,s0|

239 - |én|

237 - |ec|

159 - |ab,sl,s2,vt,vf|
128 - |ad,nl,n2,n),...,n|
160 - |ai,s0,8l,s2,...,s8|
187 - |and,x1,x2|

161 - |as,sl,sl,82,...,8|

220 - |bf.£,vzl
113 - '“o"
\ca, s\
195 - (cfc,d),s|
\cfc,dl,s\
193 - |cin,tl,4d),...,t,d|
148 - |cld,t|
191 - [cll,dl
\cll,d\
133 - |cnb,d|

\cnb,d\
266 - |cpc,tl,dl,...,t,dl
147 - |crd,tl
203 - (cro,sl|
\cro,sl\
132 - |ct,tl,t2,t3,...,¢t|
\ct,tl,t2,t3,...,t\
250 - |cac,8l|
\cwe, ... \
261 - |cws,d|
\cws,x\
171 - |cx,s0,s|
200 - |cwb,d|
\cxb,d\
- 'aow
131 - |di,nl,n2,vz|
208 - |dq,s)
= |dc,t,a,0,v|
164 - |ds,d,s|
103 - |d¢,t,s,d1,42|
\dt,t,s,d1,d2\
173 - |dx.d,x|
206 - l“.ﬂ.tz,...,ti
207 - |ed,t,dl,d2,vz|
224 - |ef,f1,£2,...,£|
151 - ep,t,pl veeespl
- ler, ...
104 - |et,tl,t2,...,t|
\et,tl1,t2,...,t\
249 - |etb,s|
112 - |ex,fl
226 - |fb,£,ve,vE|
137 - |fc,t,vz)
138 - |fdc,t.d,vz|
139 - |fde,t.d,vz|
140 - |fdm,t.d,s,vz|
141 - (fe,t,vz|
142 - |££,t,d,vz|
143 - |f),¢,8,va]|
145 - (fp,t,xl,...,x|
144 - (fr,t,0,v2l
106 - |fe,t,sl,82,...,8]
210 - |feb,t,8,vz|
211 - |fts,t,s,vz|
212 - |hc,s|
150 - |hm,t,s|

wh@ are Punctions .
wh@ is processor ser. Number
whe is processor Title
Alphabetic Branch

Add

Alphabetic Insertion

And the bits

Alghabetic Sort

Bring File

Change Activator (current)
Change Activator (initial)
Change Pill Chazacter schema
Change Pil) Char. (initial)
Change Id Numbet

Characters Left of Divider
Change Line Length (active)
Change Line Length (initial)
Change Number Base (active)
Change Nusber Base (initial)
Change Protection Class
Characters Right of Divider
Change Rub Out char. schema
Change Rub Out (initial)
Casbine Texts (superseding)
Combine Texts (save cucrent)
Change Warning Character
Change Warn. Char. (initial)
Change Work Space

Character to “X*

Change “"X“ Base (active)
Change “X" Base (initial)
Date

Divide

Define Quote

Define Relationship
Duplicate String

Define Text (superseding)
Define Text (save curcent)
Decimal to “X*

Ecase All excepting
Extract "D° characters
Ecase Plles

Ecase Partitions

Express Relationship
Ecrase Text

Ecase all occurences of Text
Erase Trailing Blanks
Exit

Pile Branch

Petch Character

Fetch "D" Characters
Fetch "D° Elements

Fetch "D" Matches

Petch Elesent

Fetch Pield

Petch Left match

Petch Partition

Petch Right match

Petch Text

Fetch To Break character
Petch To Span character
How many Characters

How many Matches

language reference

3
H
3
]
H
)
H
]
3
3
]
3

3
]
3
1
3
3
)
3
]
]
]
3
s
3
]
]
3
3
]
)
]
]
3
H
]
H
)
3
)
3
3
3
3
3
3
3
]
)
3
3
3
]
3
]
3
3
]
s
3
]
3

149 - |hp,t,d|

114 - |ht,t|
\ht\

115 - |icl

116 - |id,d|

153 - |idt,.d|
136 - |ig,dl,d2,vt,vf|
135 - |ii,sl,82,vt,vE|
117 - |im,sl,82,...,8|
102 - |is,dev|
152 - |ic)
213 - |iw.nl

= |lef ,dev|
216 - |1f,s0,d1,...,d|

- e, ...
105 - |1t,s80,d1,d2,...,d|
24 - lhth.ll,l!,...,al
110 - (mc,dl
146 - |nd,t . d|

\md, t ,d\
109 - '“o'..l"zo.o..“
\mt,t,sl,s82,...,8\

130 - |mu,nl,n2,vz|
111 - |ni,vt,vE|
168 - 'ml.'
209 - |nu,sl,s2,...,s|
246 - |oj,s,sl,d,s2|
248 - |op,s,sl ,d,s2|
186 - Jor,xl,x2|

101 - |os,s|
154 - |ot,tl,t2,...,t|
108 - |pc,dl

174 - |pl,s),s2,...,8]

162 - |ps,d,sl,82|

107 - |pt,t,sl,s2,...,8]
\pt,t,sl,s2,...,8\

196 - |qfc,s0|

194 - |qin,s0,t],t2,...,t|

197 - |qld,t|

192 - (ql1]

134 - |

202 - |5t

167 - Igp,ti

267 - Iqpc,80,tl,t2,...,t|

198 - |qid,t|

204 - |qrol
205 - |qtal
251 - |quc,a2,al,...,al
262 - |qus|
\qus\
201 - |qub|

215 - |ra.d,sl,82,83,...,8)
263 - |ecp,dl,a2,s|

166 - Iril

265 - Irj,s,sl,d,s2|

252 - |en,nl

189 - |rot,d,x|

247 - |rp,s,81,d,82|

165 - |rr,s81)|

163 - (18,8l

228 - |sat,dev|

158 - |sar|
\sar\

260 - |sda,da,mo0,yr|

How many Partitions

Hide Text

Hide all Texts

Input Character

Input "D" characters

Input “D" Texts

If Greater

1€ 1dentical

Input to Match

Input String

Input Text

Input Wait

Load External Function
List Files

List Relationship

List Texts

List Whece
Multi-partition Character
Move Divider to pos. "d"
Move Divider "d“ increments
Multi-part Text all matches
Multi-part Text next match
Multiply

Neutral Isplied

Not (complement) the bits
Null

Output Justified lines
Output Paddded lines

Or the bits

Output String

Output Texts

Partition Chatacter

Plot

Pad String

Partition Text all matches
Partition Text next match
Query Fill Character schema
Query Id Number

Query Left of Divider
Query Line Length

Query Nusber Base

‘ Query Over Flow conditions

Query Partition

Query Protection Class
Quetry Right of Divider
Query Rub Out char. schema
Query Text Area used
Query Warning Characters
Query Work Space

Query “X" Base

Return Argument

Return Character Picture
Restart Initialized

Return Justified lines
Random Number

Rotate the bits

Retucn Padded lines

Return to Restart

Reverse String

Select All Pile function dev.
“Auto Return” on line feed
no Auto Retutn on line feed
Set Date

@0 05 00 00 90 90 50 S0 00 S0 G0 00 G0 B0 00 00 00 06 G G0 ©0 G0 G2 Gc G0 G0 O3 G0 G0 00 G0 00 G5 G0 G4 S0 00 S0 G5 00 O3 ©6 00 G0 G0 00 G0 Go 00 G0 G0 G2 G G 6t G 6 G0 Gs S0 Gu 08 Ge O

199 - |sem,dev|

\sem,
222 - |sf,E,t),t2,...,t]
157 - |sfd,fun,dev|
190 - |sh,d,x|
253 - |sen,nl
258 - |sti,tl,t2,te3|
129 - |ta,nl,n2,...,nl
231 - |sw,sl,s2,s8),...,8]
232 - |sy,s),s2,...,8]
127 - [tb,t,vt,vE|
257 - |ti,.s),82|

125 - |ta,d|
\ta\

124 - |tma|
\tma\

168 - |tr,t,s8)|
210 - |uf,f,tl,t82,...,t)
169 - jut,cc|
\ut\
118 - |ve,tl,e2,...,t|
181 - |wc,sl,s|
175 - (wi,xnl,ynl|
179 - |wl|
178 - |wrl

Set “Echoplex” Mode active

“"Echoplex” mode inactive
Stoce FPile

Specify FPunction Device
Shift the bits

Seed Random Mumber

Set Time

Subtract

Switches

Systea functions

Text Branch

Time

Trace Mode activated
Trace Mode deactivated
Trace Mode All activated
Trace Mode All deactivated

Trim

Update File

User Trap active
User Trap inactive
View Texts

Wecite Characters
Write Initialize
Width Left

wWidth Right

180 - |ws,xnl,ynl,...,xn,ynikWcite Straight Lines

176 - |wx|

177 - jwyl

170 - |xc,x1,%2,.. w2l
271 - |xct,s,xl|

172 - |xd,x|

255 - 'lt.poctl_

123 - (xj,x|

256 - |xo,x,port|
270 - |xqf,s|

119 - |xc,xl

12) - |xep,xl

120 - |xw,xl,x2|

122 - |xwp,x},x2|
126 - |ye,t,s,vt,vEl
182 - |2d,c,v-,v0,v¢|
183 - |zi,c,v-,v0,v¢|
184 - |2q,c]

185 - |zs,c,nl

Write °X" displacesent

Write “¥Y" displacement

“X" to Character

eXperimental Change Punction
“X* to Decimal

eXperimental Input
eXperimental JQ
eXperimental Outpu!

elperimental Query nn:tlm
eXamine Register

eXamine Register Pair
eXperimental Write in reg.
eXperimental Wcite req. Pair
¥s There

*3" reg. Decrement and branch
“3"® reg. Inccement and branch
“2° reg. Query

“3" reg. Set

Expression formats, legend,

syntax and conventions:

|function,argusents, ..,.{ Active Expression
\function,arguments,..,.\ Neutral Expression
x,xl,.. “x" base nusbers - f file name
d,dl,.. Decimal nusbers - t text name
n,nl,.. "n" base numbers - vz default value

80 prefixing string - v-,v¢,v0 conditional value
s,8l,.. character strings - wt,vf trus/false value
Protection syntax - J..../ (....) <...> @char.
Active syntax =~ S: Ofn,arquments/ - M: Bfn,argueents:

Neutral syntax - §:

sfn,acquments/ - M: Jfn,argueents;

Wvt,t/= partition |d], sulti-partition (0d], divider (")
<sce-xxx> special condition encountered

<nav-xxx> xxx not available

ws,81s// is the Restart Expression which is oriqinally
loaded. It means: “output that string which results from the
evaluation or execution of the string to be input”. Thus:

1. Input a String 2. Evaludate said string
3. Output the result of the evaluation

In the examples that follow, the “os“ of the Restart
Expression will not be shown, but its presence is impliud.
For clutity in these exanples output will be shown between a
pair of curly braces thus: [...).

ABCDEFGH= (ABCDEFGH)

The “os" of the hestart Expression causes to be output that
string which was entered through execution of the “is®
(Input String) ot the kestart Expression. The “=" equal sign
is the Activator, signalling the end of the input string.

%08 ,APPLE/={APPLL)

The function “os" (output string) in the expression causes
the output of the second argument of the expression; the
comma i8 sensed as a delimiter between arguments and only
the second argument will be output by the “os" function.

%08, APPLEC , YORANGE /= | APPLE ,ORANGE)
%08, CAPPLE ,ORANGE>/= { APPLE ,ORANGE)
%08 ,APPLE@ ,ORANGE/= | APPLE ,ORANGE)

Here the comma is protected, hence it does not act as a
delimiter, and is entered as part of the input string. As
part of the string it 1s output by the “os” function. Note
that the protective symbol pair (in this case <¢...>) may be
anywhere as long as the comna 18 enfolded. Other protective
symbol pairs that may be used are (...) and 1.../; in
addition any single character immediately preceded by a “@*
sign is also protected as shuwn on the third line exasple.

Sdt,A,APPLES@ ,ORANGES /=

Define a Text named A with contents APPLES,ORANGES and store
it in a section of memory named the "Text Area".

Sos, Ve ,A//={APPLES)
S0s,VA//=|APPLES)

%0s,6ft ,A//=|APPLES ,ORANGES)
Vos,6A//={ APPLES)

Fetch fcam the Text Area “A” and output its contents. If the
name of the text is not the same as that of any of the
functions of the language, the fetch may be made as shown on
the second line of the example; this is said to be an
"implied fetch*. Should the text contain sywbols which
should normally have buen protected, or if it is desired not
to evaluate the text to be fetched, then the format of the
third line should be used; this is said to be a “"neutral
explicit fetch”. The fourth line shows a “neutral implied
fetch"; this behaves in a manner that is identical to the
first two lines of the exanple, but information is retained
in the computer that it was a “neutral implied” fetch.

SA/={APPLES)
bt ,A/={APPLES ,ORANGES)

Fetch the text named A, both actively and explicitly
neutrally. Output 1s effected Ly the "os” function of the
Restart Expression as indicated in the following sequence:

l. sos,Vis// 2. 0s,W// 3. V0s,APPLLS,ORANNGES/ 4. APPLES

Wt A, ME DOG AND TIE CAT AND 1ME HOKSE/=

As a purt of detinire) . this text namd A, the previously
detined text also named A ‘is crased from the ‘Pext Atea, and
the new text A, containing the mew text string 1S created.

wit ,B,4A//%t ,C,A//=

¥0s,8A//=NE DOG AND THE CAT AND ‘NIE IOKRSE)
%0s,88//=(TIC DOG AND ‘NIE CAT AND TIE IIGE)
%0s,8C//=(THE DOG AND THE CAT AND THE HOKSE)

Define a text named B as the value resulting trom fetching A
and create C by copying A using the "ct” copy text function.

spt,B,THE,DUG,AND,CAT, HIVICE/=

Partition the text named B on the chatacter patterns, “NIL",
"DUG", “ANDL®, “CAT", “HCRSE", creatimy purtitions at those
locations in Text B where each puattern appeats. The
partitions where the first: pattern occurted ate given a
value of (1), the pattitions where the second pattern
occurred ate given value [R), etc.

we,B/=((1) (2) (3) (1) (4) (3) (1) 15))

“vt* (View Text) will show the numecical value and location
of the partitions in a Texg. Note that the unpartitioned
patterns (the spaces between the words) remain intact.

48, LE,CHIEN ,ET,CHAT ,CHEVAL/
={LE QUIEN ET LE CIIAT ET LE CHEVAL)

‘The partitions with values 1, 2, 3 etc., are pluggyed by the
second, third, fourth etc. arguments of the fetch of Text B,
ard the plugyed string c2. alting is then output Ly the
Restart Expression. A niw line code was input before the
Activator. This is why the output is on the second line.

e, B/=((1) (2) (3) (1) (4, (3) (1) I5))
Note that Text B still has the partitions.

%dt,B,48,LE,CHIEN,ET,ClIAT ,'HEVAL//=
SB/={LE CHIEN ET LE CHAT E* LE CHEVAL)
$A/=(THE DOG AND THE CAT AND THE HORSE)
e, */=(*A*C*B)

tle,

/=1

A

c

8)

This will redefine B, plcyging the partitions as wmdicated;
note that any unpluyged partitions at this point would
plugged with “null® stringu. The text B, had been defined as
the same as text A. Then it was partitioned on the Enylish
words in it and was then redefined with the correspomling
French wotds replacing the English ones.

The names of the Texts in the Text Areca are determined
through use of the "1t" (List Texts) function. Each text
name 15 PRECEDED by whatever delimitimg chatacter pattern
the user specifies as the second argument of the expression.
Une exanple uses an asteridk, and the other example has a
new line code as the second arqument ot the expression.

GILLA, 1805, IS 1S A PHOCEDURE///=
/=TS 1S A PROCEDURL)
sfL,A/={%0s,NIS IS A PRUCEDURE/)

A procedute is a text consisting of one or more expressions
exccuted by fetchang said text “actively*. An explicit
neuttal fetch setves only to tetch it without its being
executed. The protective pair 1.../ serves to prevent
vxecution during the process of definition. Partitions, if
any may be plugged during the fetching process at the time
ol execution. Other examples of procedures follow.

Wit ,SOUARE , 1mu, *,*///=
Spt, SQUAKE , */=

vt , SQUAKE/=(%mu, (1), (1)/])
ASUUARE ,9/=(81)

SSQUAKRE ,12/=(144)

wit,HOWLY, 1 ¥os,

WIAT 1S YOUR NAME?- /tos,
WELL HELLO THERE 41s////=
SHOWDY/=

(WIAT 1S YOUR NAME?-)BILL=
(WELL HELLO TMERE BILL)

As strings are evaluated from the inside out and from left
to right, procedures can be nested within other procedures.
In this case the Activator must be entered after the name
(BILL in this case), to signify the end of the "is”
function. This value "BILL", then replaces the 8is/ in the
procedute and is output by the second “os”.

Wit , 100k, L oS,

‘IHIS PRUCEDURE LOOPS/SLOOP///=
SLOOk/=(

IS PROCEDURE LOOPS

TUIS PROCEDUrt LOOI'S

‘IS PROCEDURE LOOPS

‘MIS PHOCED

<sce-0s>)

To make a procedure loop, it must fetch itself. If the
looping procedure has partitions in it, they will bte plugged
during the fetching process. In such cases if no plugs are
specified, mull strings will be used. In this example the
loop was broken from the keyboard by hitting the “rubout” or
“del" key; the <sce-0s> message means “special condition
encountered” during the execution of “os".

Wit ,F,1¢ii,*,1,1,

twou, *,4F,\su,*,1///////=
pt,F,%/=

WF,1/=(1)

\F,3/=(6)

\F,5/={120)

A short recursive procedure may find the factorial of any
nurber. This procedure tests the entered number, plugging
the partitions, to see {f it is a); if not, the factorial
of the enteted nutber is that nueber multiplied by the
factorial of that number minus 1, which is computed by
fetching P. Sometimes it is desired to oryanize the
procedures in several lines, or use tabs to indent the
lines; these formatting characters (used only for esthetic
reasons) ate not teally part of the executable matter, and
would clutter up the scamning process. Such clutter is
avorded by preceding characters which have only an aesthetic
meaning with the *'® or "grave” accent mark.

SAM76 Inc,
Box 257, R.R.1
Pennington, N. J., 08534, U.S.A,

Available materials and prices effective Apr 1, 1981
Printed Matter:

SAM76 Language Manual - 240 pps, $20.00
SAM76 Beginners Tutorial booklet $ 5,00

Machine Readable materials:

SAM76 Distribution Disk - 625,00

contains object code for 8¢8¢ and 280
Source code for graphics functions,

real time clock and some miscellaneous
other functions; variety of applications
scripts, and demonstrations as well as
miscellaneous tutorial material,
Available formats (see NOTE a,B,C,D,E,F)

SAM76 TRS8d@ disk, includes brochure $25,0%
SAM76 Complete 8¢80/Z80 Source Code $60,00
Requires Z8¢ C,D.L. Macro assembler (Note 2)
SAM76 Complete DEC10@ system, includes $500.00
source code, Hershey fonts and 5 manuals

SAM76 Adventure Game (NOTE: A,B,D,E1) $25,00

SAM76 “Hershey” graphic incremental vector tables
I - Occidental Fonts excluding Gothic $25,00
II - Gothic Fonts and Oriental Index $25.00
III - Oriental Fonts $25,00
Set of three disks $60,00

Available formats are "a,B,C,D,E”

Nctes:
A - 8inch single density CP/M format
B -5 1/4 inch - Micropolis MOD 11 CP/M
C -5 1/4 inch - TRS-80 CP/M or TP/M
DL -5 1/4 inch - TRS-80 standalone
E1 - 5 1/4 inch - APPLE 280 CP/M
E2 - 5 1/4 inch - APPLE Z80 CP/M GRAPHICS
F - 5 1/4 inch - North Star Doutle Density

For other formats contact SaM7¢ by phone (609) 466-1129

TERMS: All above prices are net - payment with order
cash, money order or personal check - no credit
cards, Prices include shipping postpaid fourth
class for printed matter unless disks included
in which case first class, Add $2.00 for first
class for books alone, Overseas add $7,00 for
AIR book rate,

Net 39 prices are those quoted above multiplied
by two, One copy of invoice furnished gratis,
on request, if additional copies are required
add ¢5.,00 for each desired copy.

	Sam 75 Language Manual 01
	Sam 76 Language Reference 01
	Sam 76 Language Reference 02
	Sam 75 Language Manual 02

